Logo Search packages:      
Sourcecode: libjlayer-java version File versions  Download package

LayerIIDecoder.java

/*
 * 11/19/04  1.0 moved to LGPL.
 * 
 * 29/05/01  Michael Scheerer,  Fixed some C++ to Java porting bugs. 
 *
 * 16/07/01  Michael Scheerer, Catched a bug in method
 *           read_sampledata, which causes an outOfIndexException.
 * 
 * 12/12/99  Initial version. Adapted from javalayer.java
 *                 and Subband*.java. mdm@techie.com
 *
 * 02/28/99  Initial version : javalayer.java by E.B
 *-----------------------------------------------------------------------
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU Library General Public License as published
 *   by the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU Library General Public License for more details.
 *
 *   You should have received a copy of the GNU Library General Public
 *   License along with this program; if not, write to the Free Software
 *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *----------------------------------------------------------------------
 */

package javazoom.jl.decoder;

/**
 * Implements decoding of MPEG Audio Layer II frames. 
 */
00035 class LayerIIDecoder extends LayerIDecoder implements FrameDecoder
{

      public LayerIIDecoder()
      {
      }

      
      protected void createSubbands()
      {           
            int i;
            if (mode == Header.SINGLE_CHANNEL)
              for (i = 0; i < num_subbands; ++i)
                subbands[i] = new SubbandLayer2(i);
            else if (mode == Header.JOINT_STEREO)
            {
              for (i = 0; i < header.intensity_stereo_bound(); ++i)
                  subbands[i] = new SubbandLayer2Stereo(i);
              for (; i < num_subbands; ++i)
                  subbands[i] = new SubbandLayer2IntensityStereo(i);
            }
            else
            {
              for (i = 0; i < num_subbands; ++i)
                  subbands[i] = new SubbandLayer2Stereo(i);
        }
            
      }
      
      protected void readScaleFactorSelection()
      {
            for (int i = 0; i < num_subbands; ++i)
              ((SubbandLayer2)subbands[i]).read_scalefactor_selection(stream, crc);       
      }
      
      

       /**
        * Class for layer II subbands in single channel mode.
        */
00075       static class SubbandLayer2 extends Subband
      {
        // this table contains 3 requantized samples for each legal codeword
        // when grouped in 5 bits, i.e. 3 quantizationsteps per sample
      public static final float grouping_5bits[] = new float[]
      {
        -2.0f/3.0f, -2.0f/3.0f, -2.0f/3.0f,
                   0.0f, -2.0f/3.0f, -2.0f/3.0f,
            2.0f/3.0f, -2.0f/3.0f, -2.0f/3.0f,
        -2.0f/3.0f,      0.0f, -2.0f/3.0f,
                   0.0f,      0.0f, -2.0f/3.0f,
            2.0f/3.0f,      0.0f, -2.0f/3.0f,
        -2.0f/3.0f,  2.0f/3.0f, -2.0f/3.0f,
                   0.0f,  2.0f/3.0f, -2.0f/3.0f,
            2.0f/3.0f,  2.0f/3.0f, -2.0f/3.0f,
        -2.0f/3.0f, -2.0f/3.0f,      0.0f,
                   0.0f, -2.0f/3.0f,      0.0f,
            2.0f/3.0f, -2.0f/3.0f,      0.0f,
        -2.0f/3.0f,      0.0f,      0.0f,
                   0.0f,      0.0f,      0.0f,
            2.0f/3.0f,      0.0f,      0.0f,
        -2.0f/3.0f,  2.0f/3.0f,      0.0f,
                   0.0f,  2.0f/3.0f,      0.0f,
            2.0f/3.0f,  2.0f/3.0f,      0.0f,
        -2.0f/3.0f, -2.0f/3.0f,  2.0f/3.0f,
             0.0f, -2.0f/3.0f,  2.0f/3.0f,
            2.0f/3.0f, -2.0f/3.0f,  2.0f/3.0f,
        -2.0f/3.0f,      0.0f,  2.0f/3.0f,
             0.0f,      0.0f,  2.0f/3.0f,
         2.0f/3.0f,      0.0f,  2.0f/3.0f,
        -2.0f/3.0f,  2.0f/3.0f,  2.0f/3.0f,
                   0.0f,  2.0f/3.0f,  2.0f/3.0f,
         2.0f/3.0f,  2.0f/3.0f,  2.0f/3.0f
      };

      // this table contains 3 requantized samples for each legal codeword
      // when grouped in 7 bits, i.e. 5 quantizationsteps per sample
      public static final float grouping_7bits[] = new float[]
      {
        -0.8f, -0.8f, -0.8f,   -0.4f, -0.8f, -0.8f,    0.0f, -0.8f, -0.8f,    0.4f, -0.8f, -0.8f,    0.8f, -0.8f, -0.8f,
        -0.8f, -0.4f, -0.8f,   -0.4f, -0.4f, -0.8f,    0.0f, -0.4f, -0.8f,    0.4f, -0.4f, -0.8f,    0.8f, -0.4f, -0.8f,
        -0.8f,  0.0f, -0.8f,   -0.4f,  0.0f, -0.8f,    0.0f,  0.0f, -0.8f,    0.4f,  0.0f, -0.8f,    0.8f,  0.0f, -0.8f,
        -0.8f,  0.4f, -0.8f,   -0.4f,  0.4f, -0.8f,    0.0f,  0.4f, -0.8f,    0.4f,  0.4f, -0.8f,    0.8f,  0.4f, -0.8f,
        -0.8f,  0.8f, -0.8f,   -0.4f,  0.8f, -0.8f,    0.0f,  0.8f, -0.8f,    0.4f,  0.8f, -0.8f,    0.8f,  0.8f, -0.8f,
        -0.8f, -0.8f, -0.4f,   -0.4f, -0.8f, -0.4f,    0.0f, -0.8f, -0.4f,    0.4f, -0.8f, -0.4f,    0.8f, -0.8f, -0.4f,
        -0.8f, -0.4f, -0.4f,   -0.4f, -0.4f, -0.4f,    0.0f, -0.4f, -0.4f,    0.4f, -0.4f, -0.4f,    0.8f, -0.4f, -0.4f,
        -0.8f,  0.0f, -0.4f,   -0.4f,  0.0f, -0.4f,    0.0f,  0.0f, -0.4f,    0.4f,  0.0f, -0.4f,    0.8f,  0.0f, -0.4f,
        -0.8f,  0.4f, -0.4f,   -0.4f,  0.4f, -0.4f,    0.0f,  0.4f, -0.4f,    0.4f,  0.4f, -0.4f,    0.8f,  0.4f, -0.4f,
        -0.8f,  0.8f, -0.4f,   -0.4f,  0.8f, -0.4f,    0.0f,  0.8f, -0.4f,    0.4f,  0.8f, -0.4f,    0.8f,  0.8f, -0.4f,
        -0.8f, -0.8f,  0.0f,   -0.4f, -0.8f,  0.0f,    0.0f, -0.8f,  0.0f,    0.4f, -0.8f,  0.0f,    0.8f, -0.8f,  0.0f,
        -0.8f, -0.4f,  0.0f,   -0.4f, -0.4f,  0.0f,    0.0f, -0.4f,  0.0f,    0.4f, -0.4f,  0.0f,    0.8f, -0.4f,  0.0f,
        -0.8f,  0.0f,  0.0f,   -0.4f,  0.0f,  0.0f,    0.0f,  0.0f,  0.0f,    0.4f,  0.0f,  0.0f,    0.8f,  0.0f,  0.0f,
        -0.8f,  0.4f,  0.0f,   -0.4f,  0.4f,  0.0f,    0.0f,  0.4f,  0.0f,    0.4f,  0.4f,  0.0f,    0.8f,  0.4f,  0.0f,
        -0.8f,  0.8f,  0.0f,   -0.4f,  0.8f,  0.0f,    0.0f,  0.8f,  0.0f,    0.4f,  0.8f,  0.0f,    0.8f,  0.8f,  0.0f,
        -0.8f, -0.8f,  0.4f,   -0.4f, -0.8f,  0.4f,    0.0f, -0.8f,  0.4f,    0.4f, -0.8f,  0.4f,    0.8f, -0.8f,  0.4f,
        -0.8f, -0.4f,  0.4f,   -0.4f, -0.4f,  0.4f,    0.0f, -0.4f,  0.4f,    0.4f, -0.4f,  0.4f,    0.8f, -0.4f,  0.4f,
        -0.8f,  0.0f,  0.4f,   -0.4f,  0.0f,  0.4f,    0.0f,  0.0f,  0.4f,    0.4f,  0.0f,  0.4f,    0.8f,  0.0f,  0.4f,
        -0.8f,  0.4f,  0.4f,   -0.4f,  0.4f,  0.4f,    0.0f,  0.4f,  0.4f,    0.4f,  0.4f,  0.4f,    0.8f,  0.4f,  0.4f,
        -0.8f,  0.8f,  0.4f,   -0.4f,  0.8f,  0.4f,    0.0f,  0.8f,  0.4f,    0.4f,  0.8f,  0.4f,    0.8f,  0.8f,  0.4f,
        -0.8f, -0.8f,  0.8f,   -0.4f, -0.8f,  0.8f,    0.0f, -0.8f,  0.8f,    0.4f, -0.8f,  0.8f,    0.8f, -0.8f,  0.8f,
        -0.8f, -0.4f,  0.8f,   -0.4f, -0.4f,  0.8f,    0.0f, -0.4f,  0.8f,    0.4f, -0.4f,  0.8f,    0.8f, -0.4f,  0.8f,
        -0.8f,  0.0f,  0.8f,   -0.4f,  0.0f,  0.8f,    0.0f,  0.0f,  0.8f,    0.4f,  0.0f,  0.8f,    0.8f,  0.0f,  0.8f,
        -0.8f,  0.4f,  0.8f,   -0.4f,  0.4f,  0.8f,    0.0f,  0.4f,  0.8f,    0.4f,  0.4f,  0.8f,    0.8f,  0.4f,  0.8f,
        -0.8f,  0.8f,  0.8f,   -0.4f,  0.8f,  0.8f,    0.0f,  0.8f,  0.8f,    0.4f,  0.8f,  0.8f,    0.8f,  0.8f,  0.8f
      };

      // this table contains 3 requantized samples for each legal codeword
      // when grouped in 10 bits, i.e. 9 quantizationsteps per sample
      public static final float grouping_10bits[] =
      {
        -8.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,        0.0f, -8.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,        0.0f, -6.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,        0.0f, -4.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,        0.0f, -2.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f,      0.0f, -8.0f/9.0f,   -6.0f/9.0f,      0.0f, -8.0f/9.0f,   -4.0f/9.0f,      0.0f, -8.0f/9.0f,
        -2.0f/9.0f,      0.0f, -8.0f/9.0f,        0.0f,      0.0f, -8.0f/9.0f,    2.0f/9.0f,      0.0f, -8.0f/9.0f,
            4.0f/9.0f,      0.0f, -8.0f/9.0f,    6.0f/9.0f,      0.0f, -8.0f/9.0f,    8.0f/9.0f,      0.0f, -8.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,        0.0f,  2.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,        0.0f,  4.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,        0.0f,  6.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,        0.0f,  8.0f/9.0f, -8.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,
            4.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f, -8.0f/9.0f,
        -8.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,        0.0f, -8.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,        0.0f, -6.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,        0.0f, -4.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,        0.0f, -2.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f,      0.0f, -6.0f/9.0f,   -6.0f/9.0f,      0.0f, -6.0f/9.0f,   -4.0f/9.0f,      0.0f, -6.0f/9.0f,
        -2.0f/9.0f,      0.0f, -6.0f/9.0f,        0.0f,      0.0f, -6.0f/9.0f,    2.0f/9.0f,      0.0f, -6.0f/9.0f,
            4.0f/9.0f,      0.0f, -6.0f/9.0f,    6.0f/9.0f,      0.0f, -6.0f/9.0f,    8.0f/9.0f,      0.0f, -6.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,        0.0f,  2.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,        0.0f,  4.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,        0.0f,  6.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,        0.0f,  8.0f/9.0f, -6.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,
            4.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f, -6.0f/9.0f,
        -8.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,        0.0f, -8.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,        0.0f, -6.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,        0.0f, -4.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,        0.0f, -2.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f,      0.0f, -4.0f/9.0f,   -6.0f/9.0f,      0.0f, -4.0f/9.0f,   -4.0f/9.0f,      0.0f, -4.0f/9.0f,
        -2.0f/9.0f,      0.0f, -4.0f/9.0f,        0.0f,      0.0f, -4.0f/9.0f,    2.0f/9.0f,      0.0f, -4.0f/9.0f,
            4.0f/9.0f,      0.0f, -4.0f/9.0f,    6.0f/9.0f,      0.0f, -4.0f/9.0f,    8.0f/9.0f,      0.0f, -4.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,        0.0f,  2.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,        0.0f,  4.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,        0.0f,  6.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,        0.0f,  8.0f/9.0f, -4.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,
            4.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f, -4.0f/9.0f,
        -8.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,        0.0f, -8.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,        0.0f, -6.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,        0.0f, -4.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,        0.0f, -2.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f,      0.0f, -2.0f/9.0f,   -6.0f/9.0f,      0.0f, -2.0f/9.0f,   -4.0f/9.0f,      0.0f, -2.0f/9.0f,
        -2.0f/9.0f,      0.0f, -2.0f/9.0f,        0.0f,      0.0f, -2.0f/9.0f,    2.0f/9.0f,      0.0f, -2.0f/9.0f,
            4.0f/9.0f,      0.0f, -2.0f/9.0f,    6.0f/9.0f,      0.0f, -2.0f/9.0f,    8.0f/9.0f,      0.0f, -2.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,        0.0f,  2.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,        0.0f,  4.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,        0.0f,  6.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,        0.0f,  8.0f/9.0f, -2.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,
            4.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f, -2.0f/9.0f,
        -8.0f/9.0f, -8.0f/9.0f,      0.0f,   -6.0f/9.0f, -8.0f/9.0f,      0.0f,   -4.0f/9.0f, -8.0f/9.0f,      0.0f,
        -2.0f/9.0f, -8.0f/9.0f,      0.0f,        0.0f, -8.0f/9.0f,      0.0f,    2.0f/9.0f, -8.0f/9.0f,      0.0f,
            4.0f/9.0f, -8.0f/9.0f,      0.0f,    6.0f/9.0f, -8.0f/9.0f,      0.0f,    8.0f/9.0f, -8.0f/9.0f,      0.0f,
        -8.0f/9.0f, -6.0f/9.0f,      0.0f,   -6.0f/9.0f, -6.0f/9.0f,      0.0f,   -4.0f/9.0f, -6.0f/9.0f,      0.0f,
        -2.0f/9.0f, -6.0f/9.0f,      0.0f,        0.0f, -6.0f/9.0f,      0.0f,    2.0f/9.0f, -6.0f/9.0f,      0.0f,
            4.0f/9.0f, -6.0f/9.0f,      0.0f,    6.0f/9.0f, -6.0f/9.0f,      0.0f,    8.0f/9.0f, -6.0f/9.0f,      0.0f,
        -8.0f/9.0f, -4.0f/9.0f,      0.0f,   -6.0f/9.0f, -4.0f/9.0f,      0.0f,   -4.0f/9.0f, -4.0f/9.0f,      0.0f,
        -2.0f/9.0f, -4.0f/9.0f,      0.0f,        0.0f, -4.0f/9.0f,      0.0f,    2.0f/9.0f, -4.0f/9.0f,      0.0f,
            4.0f/9.0f, -4.0f/9.0f,      0.0f,    6.0f/9.0f, -4.0f/9.0f,      0.0f,    8.0f/9.0f, -4.0f/9.0f,      0.0f,
        -8.0f/9.0f, -2.0f/9.0f,      0.0f,   -6.0f/9.0f, -2.0f/9.0f,      0.0f,   -4.0f/9.0f, -2.0f/9.0f,      0.0f,
        -2.0f/9.0f, -2.0f/9.0f,      0.0f,        0.0f, -2.0f/9.0f,      0.0f,    2.0f/9.0f, -2.0f/9.0f,      0.0f,
            4.0f/9.0f, -2.0f/9.0f,      0.0f,    6.0f/9.0f, -2.0f/9.0f,      0.0f,    8.0f/9.0f, -2.0f/9.0f,      0.0f,
        -8.0f/9.0f,      0.0f,      0.0f,   -6.0f/9.0f,      0.0f,      0.0f,   -4.0f/9.0f,      0.0f,      0.0f,
        -2.0f/9.0f,      0.0f,      0.0f,        0.0f,      0.0f,      0.0f,    2.0f/9.0f,      0.0f,      0.0f,
            4.0f/9.0f,      0.0f,      0.0f,    6.0f/9.0f,      0.0f,      0.0f,    8.0f/9.0f,      0.0f,      0.0f,
        -8.0f/9.0f,  2.0f/9.0f,      0.0f,   -6.0f/9.0f,  2.0f/9.0f,      0.0f,   -4.0f/9.0f,  2.0f/9.0f,      0.0f,
        -2.0f/9.0f,  2.0f/9.0f,      0.0f,        0.0f,  2.0f/9.0f,      0.0f,    2.0f/9.0f,  2.0f/9.0f,      0.0f,
            4.0f/9.0f,  2.0f/9.0f,      0.0f,    6.0f/9.0f,  2.0f/9.0f,      0.0f,    8.0f/9.0f,  2.0f/9.0f,      0.0f,
        -8.0f/9.0f,  4.0f/9.0f,      0.0f,   -6.0f/9.0f,  4.0f/9.0f,      0.0f,   -4.0f/9.0f,  4.0f/9.0f,      0.0f,
        -2.0f/9.0f,  4.0f/9.0f,      0.0f,        0.0f,  4.0f/9.0f,      0.0f,    2.0f/9.0f,  4.0f/9.0f,      0.0f,
            4.0f/9.0f,  4.0f/9.0f,      0.0f,    6.0f/9.0f,  4.0f/9.0f,      0.0f,    8.0f/9.0f,  4.0f/9.0f,      0.0f,
        -8.0f/9.0f,  6.0f/9.0f,      0.0f,   -6.0f/9.0f,  6.0f/9.0f,      0.0f,   -4.0f/9.0f,  6.0f/9.0f,      0.0f,
        -2.0f/9.0f,  6.0f/9.0f,      0.0f,        0.0f,  6.0f/9.0f,      0.0f,    2.0f/9.0f,  6.0f/9.0f,      0.0f,
            4.0f/9.0f,  6.0f/9.0f,      0.0f,    6.0f/9.0f,  6.0f/9.0f,      0.0f,    8.0f/9.0f,  6.0f/9.0f,      0.0f,
        -8.0f/9.0f,  8.0f/9.0f,      0.0f,   -6.0f/9.0f,  8.0f/9.0f,      0.0f,   -4.0f/9.0f,  8.0f/9.0f,      0.0f,
        -2.0f/9.0f,  8.0f/9.0f,      0.0f,        0.0f,  8.0f/9.0f,      0.0f,    2.0f/9.0f,  8.0f/9.0f,      0.0f,
         4.0f/9.0f,  8.0f/9.0f,      0.0f,    6.0f/9.0f,  8.0f/9.0f,      0.0f,    8.0f/9.0f,  8.0f/9.0f,      0.0f,
        -8.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,        0.0f, -8.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,
            4.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,        0.0f, -6.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,
            4.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,        0.0f, -4.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,
         4.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,        0.0f, -2.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,
         4.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f,      0.0f,  2.0f/9.0f,   -6.0f/9.0f,      0.0f,  2.0f/9.0f,   -4.0f/9.0f,      0.0f,  2.0f/9.0f,
        -2.0f/9.0f,      0.0f,  2.0f/9.0f,        0.0f,      0.0f,  2.0f/9.0f,    2.0f/9.0f,      0.0f,  2.0f/9.0f,
         4.0f/9.0f,      0.0f,  2.0f/9.0f,    6.0f/9.0f,      0.0f,  2.0f/9.0f,    8.0f/9.0f,      0.0f,  2.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,        0.0f,  2.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,
         4.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,        0.0f,  4.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,
            4.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,        0.0f,  6.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,
         4.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,        0.0f,  8.0f/9.0f,  2.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,
         4.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f,  2.0f/9.0f,
        -8.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,        0.0f, -8.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,
            4.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,        0.0f, -6.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,
         4.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,        0.0f, -4.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,
         4.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,        0.0f, -2.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,
            4.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f,      0.0f,  4.0f/9.0f,   -6.0f/9.0f,      0.0f,  4.0f/9.0f,   -4.0f/9.0f,      0.0f,  4.0f/9.0f,
        -2.0f/9.0f,      0.0f,  4.0f/9.0f,        0.0f,      0.0f,  4.0f/9.0f,    2.0f/9.0f,      0.0f,  4.0f/9.0f,
         4.0f/9.0f,      0.0f,  4.0f/9.0f,    6.0f/9.0f,      0.0f,  4.0f/9.0f,    8.0f/9.0f,      0.0f,  4.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,        0.0f,  2.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,
         4.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,        0.0f,  4.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,
         4.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,        0.0f,  6.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,
            4.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,        0.0f,  8.0f/9.0f,  4.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,
            4.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f,  4.0f/9.0f,
        -8.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,        0.0f, -8.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,
         4.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,        0.0f, -6.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,
         4.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,        0.0f, -4.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,
            4.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,        0.0f, -2.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,
         4.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f,      0.0f,  6.0f/9.0f,   -6.0f/9.0f,      0.0f,  6.0f/9.0f,   -4.0f/9.0f,      0.0f,  6.0f/9.0f,
        -2.0f/9.0f,      0.0f,  6.0f/9.0f,        0.0f,      0.0f,  6.0f/9.0f,    2.0f/9.0f,      0.0f,  6.0f/9.0f,
            4.0f/9.0f,      0.0f,  6.0f/9.0f,    6.0f/9.0f,      0.0f,  6.0f/9.0f,    8.0f/9.0f,      0.0f,  6.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,        0.0f,  2.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,
            4.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,        0.0f,  4.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,
            4.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,        0.0f,  6.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,
            4.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,        0.0f,  8.0f/9.0f,  6.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,
            4.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f,  6.0f/9.0f,
        -8.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,        0.0f, -8.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,
         4.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f, -8.0f/9.0f,  8.0f/9.0f,
        -8.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,        0.0f, -6.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,
            4.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f, -6.0f/9.0f,  8.0f/9.0f,
        -8.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,        0.0f, -4.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,
         4.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f, -4.0f/9.0f,  8.0f/9.0f,
        -8.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,        0.0f, -2.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,
         4.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f, -2.0f/9.0f,  8.0f/9.0f,
        -8.0f/9.0f,      0.0f,  8.0f/9.0f,   -6.0f/9.0f,      0.0f,  8.0f/9.0f,   -4.0f/9.0f,      0.0f,  8.0f/9.0f,
        -2.0f/9.0f,      0.0f,  8.0f/9.0f,        0.0f,      0.0f,  8.0f/9.0f,    2.0f/9.0f,      0.0f,  8.0f/9.0f,
         4.0f/9.0f,      0.0f,  8.0f/9.0f,    6.0f/9.0f,      0.0f,  8.0f/9.0f,    8.0f/9.0f,      0.0f,  8.0f/9.0f,
        -8.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,        0.0f,  2.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,
            4.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f,  2.0f/9.0f,  8.0f/9.0f,
        -8.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,        0.0f,  4.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,
            4.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f,  4.0f/9.0f,  8.0f/9.0f,
        -8.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,        0.0f,  6.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,
         4.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f,  6.0f/9.0f,  8.0f/9.0f,
        -8.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f,   -6.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f,   -4.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f,
        -2.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f,        0.0f,  8.0f/9.0f,  8.0f/9.0f,    2.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f,
         4.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f,    6.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f,    8.0f/9.0f,  8.0f/9.0f,  8.0f/9.0f
      };

      // data taken from ISO/IEC DIS 11172, Annexes 3-B.2[abcd] and 3-B.4:

      // subbands 0-2 in tables 3-B.2a and 2b: (index is allocation)
      public static final int table_ab1_codelength[] =
        // bits per codeword
      { 0, 5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };

      public static final float table_ab1_groupingtables[][] =
        // pointer to sample grouping table, or NULL-pointer if ungrouped
      { null, grouping_5bits, null, null, null, null, null, null, null, null, null, null, null, null, null, null };

      public static final float table_ab1_factor[] =
        // factor for requantization: (real)sample * factor - 1.0 gives requantized sample
      { 0.0f, 1.0f/2.0f, 1.0f/4.0f, 1.0f/8.0f, 1.0f/16.0f, 1.0f/32.0f, 1.0f/64.0f,
        1.0f/128.0f, 1.0f/256.0f, 1.0f/512.0f, 1.0f/1024.0f, 1.0f/2048.0f,
        1.0f/4096.0f, 1.0f/8192.0f, 1.0f/16384.0f, 1.0f/32768.0f };

      public static final float table_ab1_c[] =
        // factor c for requantization from table 3-B.4
      { 0.0f,           1.33333333333f, 1.14285714286f, 1.06666666666f, 1.03225806452f,
        1.01587301587f, 1.00787401575f, 1.00392156863f, 1.00195694716f, 1.00097751711f,
        1.00048851979f, 1.00024420024f, 1.00012208522f, 1.00006103888f, 1.00003051851f,
        1.00001525902f };

      public static final float table_ab1_d[] =
        // addend d for requantization from table 3-B.4
      { 0.0f,           0.50000000000f, 0.25000000000f, 0.12500000000f, 0.06250000000f,
        0.03125000000f, 0.01562500000f, 0.00781250000f, 0.00390625000f, 0.00195312500f,
        0.00097656250f, 0.00048828125f, 0.00024414063f, 0.00012207031f, 0.00006103516f,
        0.00003051758f };

      // subbands 3-... tables 3-B.2a and 2b:
      public static final float[] table_ab234_groupingtables[] =
      { null, grouping_5bits, grouping_7bits, null, grouping_10bits, null, null, null, null, null, null, null, null, null, null, null };

      // subbands 3-10 in tables 3-B.2a and 2b:
      public static final int table_ab2_codelength[] =
      { 0, 5, 7, 3, 10, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16 };
      public static final float table_ab2_factor[] =
      { 0.0f, 1.0f/2.0f, 1.0f/4.0f, 1.0f/4.0f, 1.0f/8.0f, 1.0f/8.0f, 1.0f/16.0f,
        1.0f/32.0f, 1.0f/64.0f, 1.0f/128.0f, 1.0f/256.0f, 1.0f/512.0f,
        1.0f/1024.0f, 1.0f/2048.0f, 1.0f/4096.0f, 1.0f/32768.0f };
      public static final float table_ab2_c[] =
      { 0.0f,           1.33333333333f, 1.60000000000f, 1.14285714286f, 1.77777777777f,
        1.06666666666f, 1.03225806452f, 1.01587301587f, 1.00787401575f, 1.00392156863f,
        1.00195694716f, 1.00097751711f, 1.00048851979f, 1.00024420024f, 1.00012208522f,
        1.00001525902f };
      public static final float table_ab2_d[] =
      { 0.0f,           0.50000000000f, 0.50000000000f, 0.25000000000f, 0.50000000000f,
        0.12500000000f, 0.06250000000f, 0.03125000000f, 0.01562500000f, 0.00781250000f,
        0.00390625000f, 0.00195312500f, 0.00097656250f, 0.00048828125f, 0.00024414063f,
        0.00003051758f };

      // subbands 11-22 in tables 3-B.2a and 2b:
      public static final int table_ab3_codelength[] = { 0, 5, 7, 3, 10, 4, 5, 16 };
      public static final float table_ab3_factor[] =
      { 0.0f, 1.0f/2.0f, 1.0f/4.0f, 1.0f/4.0f, 1.0f/8.0f, 1.0f/8.0f, 1.0f/16.0f, 1.0f/32768.0f };
      public static final float table_ab3_c[] =
      { 0.0f,           1.33333333333f, 1.60000000000f, 1.14285714286f, 1.77777777777f,
        1.06666666666f, 1.03225806452f, 1.00001525902f };
      public static final float table_ab3_d[] =
      { 0.0f,           0.50000000000f, 0.50000000000f, 0.25000000000f, 0.50000000000f,
        0.12500000000f, 0.06250000000f, 0.00003051758f };

      // subbands 23-... in tables 3-B.2a and 2b:
      public static final int table_ab4_codelength[] = { 0, 5, 7, 16 };
      public static final float table_ab4_factor[] = { 0.0f, 1.0f/2.0f, 1.0f/4.0f, 1.0f/32768.0f };
      public static final float table_ab4_c[] = { 0.0f, 1.33333333333f, 1.60000000000f, 1.00001525902f };
      public static final float table_ab4_d[] = { 0.0f, 0.50000000000f, 0.50000000000f, 0.00003051758f };

      // subbands in tables 3-B.2c and 2d:
      public static final int table_cd_codelength[] =
      { 0, 5, 7, 10, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
      public static final float table_cd_groupingtables[][] =
      { null, grouping_5bits, grouping_7bits, grouping_10bits, null, null, null, null, null, null, null, null, null, null, null, null };
      public static final float table_cd_factor[] =
      { 0.0f, 1.0f/2.0f, 1.0f/4.0f, 1.0f/8.0f, 1.0f/8.0f, 1.0f/16.0f, 1.0f/32.0f, 1.0f/64.0f,
        1.0f/128.0f, 1.0f/256.0f, 1.0f/512.0f, 1.0f/1024.0f, 1.0f/2048.0f, 1.0f/4096.0f,
        1.0f/8192.0f, 1.0f/16384.0f };
      public static final float table_cd_c[] =
      { 0.0f,           1.33333333333f, 1.60000000000f, 1.77777777777f, 1.06666666666f,
        1.03225806452f, 1.01587301587f, 1.00787401575f, 1.00392156863f, 1.00195694716f,
        1.00097751711f, 1.00048851979f, 1.00024420024f, 1.00012208522f, 1.00006103888f,
        1.00003051851f };
      public static final float table_cd_d[] =
      { 0.0f,           0.50000000000f, 0.50000000000f, 0.50000000000f, 0.12500000000f,
        0.06250000000f, 0.03125000000f, 0.01562500000f, 0.00781250000f, 0.00390625000f,
        0.00195312500f, 0.00097656250f, 0.00048828125f, 0.00024414063f, 0.00012207031f,
        0.00006103516f };



        protected int             subbandnumber;
        protected int                     allocation;
        protected int                     scfsi;
        protected float             scalefactor1, scalefactor2, scalefactor3;
        protected int[]                   codelength = {0}; 
        protected float groupingtable[][] = new float[2][]; 
        //protected float[][]             groupingtable = {{0},{0}} ;
        protected float[]                 factor = {0.0f};
        protected int                     groupnumber;
        protected int               samplenumber;
        protected float[]                 samples = new float[3];
        protected float[]                 c = {0};
        protected float[]               d = {0};
        /**
         * Constructor
         */
00498         public SubbandLayer2(int subbandnumber)
        {   
            this.subbandnumber = subbandnumber;
          groupnumber = samplenumber = 0;  
        }
        
        
        /**
         *
         */
        protected int get_allocationlength (Header header)
        {
            if (header.version() == Header.MPEG1)
            {
              int channel_bitrate = header.bitrate_index();

              // calculate bitrate per channel:
              if (header.mode() != Header.SINGLE_CHANNEL)
                   if (channel_bitrate == 4)
                        channel_bitrate = 1;
                   else
                        channel_bitrate -= 4;

              if (channel_bitrate == 1 || channel_bitrate == 2)
                   // table 3-B.2c or 3-B.2d
                   if (subbandnumber <= 1)
                        return 4;
                   else
                        return 3;
              else
                   // tables 3-B.2a or 3-B.2b
                   if (subbandnumber <= 10)
                        return 4;
                   else if (subbandnumber <= 22)
                        return 3;
                   else
                        return 2;
          }
            else
            { // MPEG-2 LSF -- Jeff

             // table B.1 of ISO/IEC 13818-3
           if (subbandnumber <= 3)
                  return 4;
           else if (subbandnumber <= 10)
                  return 3;
           else
                  return 2;
          }
        }
        
        /**
         *
         */
         protected void prepare_sample_reading(Header header, int allocation,
                                                                   //float[][] groupingtable,
                                                                     int channel,
                                               float[] factor, int[] codelength,
                                               float[] c, float[] d)
         {
                  int channel_bitrate = header.bitrate_index();
                  // calculate bitrate per channel:
                  if (header.mode() != Header.SINGLE_CHANNEL)
                        if (channel_bitrate == 4)
                              channel_bitrate = 1;
                        else
                              channel_bitrate -= 4;
                  
                   if (channel_bitrate == 1 || channel_bitrate == 2)
                   {
                         // table 3-B.2c or 3-B.2d
                         groupingtable[channel] = table_cd_groupingtables[allocation];
                         factor[0] = table_cd_factor[allocation];
                         codelength[0] = table_cd_codelength[allocation];
                         c[0] = table_cd_c[allocation];
                         d[0] = table_cd_d[allocation];
                   }
                   else
                   {
                         // tables 3-B.2a or 3-B.2b
                         if (subbandnumber <= 2)
                         {
                              groupingtable[channel] = table_ab1_groupingtables[allocation];
                              factor[0] = table_ab1_factor[allocation];
                              codelength[0] = table_ab1_codelength[allocation];
                        c[0] = table_ab1_c[allocation];
                        d[0] = table_ab1_d[allocation];
                       }
                         else
                         {
                        groupingtable[channel] = table_ab234_groupingtables[allocation];
                              if (subbandnumber <= 10)
                              {
                                    factor[0] = table_ab2_factor[allocation];
                                    codelength[0] = table_ab2_codelength[allocation];
                                    c[0] = table_ab2_c[allocation];
                                    d[0] = table_ab2_d[allocation];
                        }
                        else if (subbandnumber <= 22)
                        {
                                    factor[0] = table_ab3_factor[allocation];
                                    codelength[0] = table_ab3_codelength[allocation];
                                    c[0] = table_ab3_c[allocation];
                                    d[0] = table_ab3_d[allocation];
                        }
                              else
                        {
                                    factor[0] = table_ab4_factor[allocation];
                                    codelength[0] = table_ab4_codelength[allocation];
                                    c[0] = table_ab4_c[allocation];
                                    d[0] = table_ab4_d[allocation];
                        }
                         }
                   }   
         }
                               
        
        /**
         *
         */
        public void read_allocation(Bitstream stream, Header header, Crc16 crc)
        {
             int length = get_allocationlength(header);
             allocation = stream.get_bits(length);
             if (crc != null) 
                   crc.add_bits(allocation, length);  
        }
        
        /**
         *
         */
        public void read_scalefactor_selection (Bitstream stream, Crc16 crc)
        {
            if (allocation != 0)
            {
            scfsi = stream.get_bits(2);
            if (crc != null) crc.add_bits(scfsi, 2);
          }
        }

        /**
         *
         */
        public void read_scalefactor (Bitstream stream, Header header)
        {
            if (allocation != 0)
            {
               switch (scfsi)
             {
                  case 0:
                   scalefactor1 = scalefactors[stream.get_bits(6)];
                   scalefactor2 = scalefactors[stream.get_bits(6)];
                   scalefactor3 = scalefactors[stream.get_bits(6)];
                   break;
                  case 1:
                   scalefactor1 = scalefactor2 = scalefactors[stream.get_bits(6)];
                   scalefactor3 = scalefactors[stream.get_bits(6)];
                   break;
              case 2:
                   scalefactor1 = scalefactor2 = scalefactor3 = scalefactors[stream.get_bits(6)];
                   break;
                case 3:
                   scalefactor1 = scalefactors[stream.get_bits(6)];
                 scalefactor2 = scalefactor3 = scalefactors[stream.get_bits(6)];
                 break;
            }
            prepare_sample_reading(header, allocation, 0,
                            factor, codelength, c, d);
        }
        }
        
        /**
         *
         */
        public boolean read_sampledata (Bitstream stream)
        {
            if (allocation != 0)
             if (groupingtable[0] != null)
             {
                  int samplecode = stream.get_bits(codelength[0]);
                  // create requantized samples:
                  samplecode += samplecode << 1;
                  float[] target = samples;
                  float[] source = groupingtable[0];
              /*
              int tmp = 0;
                  int temp = 0;
                  target[tmp++] = source[samplecode + temp];
                  temp++;
                  target[tmp++] = source[samplecode + temp];
                  temp++;
                  target[tmp] = source[samplecode + temp];
                  */
                  //Bugfix:
                  int tmp = 0;
                  int temp = samplecode;
                  
                  if(temp > source.length - 3) temp = source.length - 3;
                  
                  target[tmp] = source[temp];
                  temp++;tmp++;
                  target[tmp] = source[temp];
                  temp++;tmp++;
                  target[tmp] = source[temp];
                  
                  // memcpy (samples, groupingtable + samplecode, 3 * sizeof (real));
             }
             else
             {
                  samples[0] = (float) ((stream.get_bits(codelength[0])) * factor[0] - 1.0);
                  samples[1] = (float) ((stream.get_bits(codelength[0])) * factor[0] - 1.0);
                  samples[2] = (float) ((stream.get_bits(codelength[0])) * factor[0] - 1.0);
             }

            samplenumber = 0;
              if (++groupnumber == 12)
                   return true;
              else
                   return false;
        }

        /**
         *
         */
        public boolean put_next_sample(int channels, SynthesisFilter filter1, SynthesisFilter filter2)
        {
          if ((allocation != 0) && (channels != OutputChannels.RIGHT_CHANNEL))
          {
             float sample = samples[samplenumber];
        
             if (groupingtable[0] == null)
                  sample = (sample + d[0]) * c[0];
             if (groupnumber <= 4)
                  sample *= scalefactor1;
             else if (groupnumber <= 8)
                  sample *= scalefactor2;
             else
                  sample *= scalefactor3;
             filter1.input_sample(sample, subbandnumber);
          }
        
          if (++samplenumber == 3)
             return true;
          else
             return false;
        }
      };
      
       /**
        * Class for layer II subbands in joint stereo mode.
        */
00749       static class SubbandLayer2IntensityStereo extends SubbandLayer2
      {
        protected int          channel2_scfsi;
        protected float        channel2_scalefactor1, channel2_scalefactor2, channel2_scalefactor3;

        /**
         * Constructor
         */
00757         public SubbandLayer2IntensityStereo (int subbandnumber)
        {
            super(subbandnumber);
        }

        /**
         *
         */
        public void read_allocation(Bitstream stream, Header header, Crc16 crc)
        {
          super.read_allocation (stream, header, crc);
        }
        
        /**
         *
         */
        public void read_scalefactor_selection(Bitstream stream, Crc16 crc)
        {
          if (allocation != 0)
          {
             scfsi = stream.get_bits(2);
             channel2_scfsi = stream.get_bits(2);
             if (crc != null)
             {
                  crc.add_bits(scfsi, 2);
                  crc.add_bits(channel2_scfsi, 2);
             }
          }  
        }
        
        /**
         *
         */
        public void read_scalefactor(Bitstream stream, Header header)
        {
          if (allocation != 0)
          {
             super.read_scalefactor(stream, header);
             switch (channel2_scfsi)
             {
                  case 0:
                  channel2_scalefactor1 = scalefactors[stream.get_bits(6)];
                  channel2_scalefactor2 = scalefactors[stream.get_bits(6)];
                  channel2_scalefactor3 = scalefactors[stream.get_bits(6)];
                  break;
        
                  case 1:
                  channel2_scalefactor1 = channel2_scalefactor2 = scalefactors[stream.get_bits (6)];
                  channel2_scalefactor3 = scalefactors[stream.get_bits(6)];
                  break;
        
                  case 2:
                  channel2_scalefactor1 = channel2_scalefactor2 =
                  channel2_scalefactor3 = scalefactors[stream.get_bits(6)];
                  break;
        
                  case 3:
                  channel2_scalefactor1 = scalefactors[stream.get_bits(6)];
                  channel2_scalefactor2 = channel2_scalefactor3 = scalefactors[stream.get_bits (6)];
                  break;
             }
          }
        
        }
        
        /**
         *
         */
        public boolean read_sampledata(Bitstream stream)
        {
             return super.read_sampledata (stream);
        }
        
        /**
         *
         */
        public boolean put_next_sample(int channels, SynthesisFilter filter1, SynthesisFilter filter2)
        {
              if (allocation != 0)
              {
                   float sample = samples[samplenumber];
            
                   if (groupingtable[0] == null)
                        sample = (sample + d[0]) * c[0];
                   if (channels == OutputChannels.BOTH_CHANNELS)
                     {
                          float sample2 = sample;
                        if (groupnumber <= 4)
                        {
                              sample *= scalefactor1;
                              sample2 *= channel2_scalefactor1;
                          }
                          else if (groupnumber <= 8)
                          {
                              sample *= scalefactor2;
                              sample2 *= channel2_scalefactor2;
                          }
                          else
                          {
                              sample *= scalefactor3;
                              sample2 *= channel2_scalefactor3;
                          }
                          filter1.input_sample(sample, subbandnumber);
                        filter2.input_sample(sample2, subbandnumber);
                      }
                        else if (channels == OutputChannels.LEFT_CHANNEL)
                        {
                              if (groupnumber <= 4)
                                    sample *= scalefactor1;
                        else if (groupnumber <= 8)
                                    sample *= scalefactor2;
                              else
                                    sample *= scalefactor3;
                              filter1.input_sample(sample, subbandnumber);
                         }
                         else
                         {
                              if (groupnumber <= 4)
                              sample *= channel2_scalefactor1;
                              else if (groupnumber <= 8)
                                    sample *= channel2_scalefactor2;
                              else
                                    sample *= channel2_scalefactor3;
                              filter1.input_sample(sample, subbandnumber);
                        }
                  }
            
              if (++samplenumber == 3)
                   return true;
              else
             return false;
        }
      };

       /**
        * Class for layer II subbands in stereo mode.
        */
00894       static class SubbandLayer2Stereo extends SubbandLayer2
      {
        protected int               channel2_allocation;
        protected int         channel2_scfsi;
        protected float       channel2_scalefactor1, channel2_scalefactor2, channel2_scalefactor3;
        //protected boolean         channel2_grouping;  ???? Never used!
        protected int[]             channel2_codelength = {0};
        //protected float[][]       channel2_groupingtable = {{0},{0}};
        protected float[]           channel2_factor = {0};
        protected float[]     channel2_samples;
        protected float[]           channel2_c = {0};
        protected float[]           channel2_d = {0};
        
        /**
         * Constructor
         */
00910         public SubbandLayer2Stereo(int subbandnumber)
        {
            super(subbandnumber);
            channel2_samples = new float[3];
        }
        
        /**
         *
         */
        public void read_allocation (Bitstream stream, Header header, Crc16 crc)
        {
          int length = get_allocationlength(header);
          allocation = stream.get_bits(length);
          channel2_allocation = stream.get_bits(length);
          if (crc != null)
          {
             crc.add_bits(allocation, length);
             crc.add_bits(channel2_allocation, length);
          }
        }

        /**
         *
         */
        public void read_scalefactor_selection(Bitstream stream, Crc16 crc)
        {
              if (allocation != 0)
              {
                   scfsi = stream.get_bits(2);
                   if (crc != null)
                        crc.add_bits(scfsi, 2);
              }
              if (channel2_allocation != 0)
              {
                   channel2_scfsi = stream.get_bits(2);
                   if (crc != null)
                        crc.add_bits(channel2_scfsi, 2);
              }
        }

        /**
         *
         */
        public void read_scalefactor(Bitstream stream, Header header)
        {
          super.read_scalefactor(stream, header);
          if (channel2_allocation != 0)
          {
             switch (channel2_scfsi)
             {
                  case 0:
               channel2_scalefactor1 = scalefactors[stream.get_bits(6)];
                     channel2_scalefactor2 = scalefactors[stream.get_bits(6)];
                   channel2_scalefactor3 = scalefactors[stream.get_bits(6)];
                   break;
        
                  case 1:
                     channel2_scalefactor1 = channel2_scalefactor2 =
                                                      scalefactors[stream.get_bits(6)];
                   channel2_scalefactor3 = scalefactors[stream.get_bits(6)];
                   break;
        
                  case 2:
                     channel2_scalefactor1 = channel2_scalefactor2 =
                   channel2_scalefactor3 = scalefactors[stream.get_bits(6)];
                   break;
        
                  case 3:
                     channel2_scalefactor1 = scalefactors[stream.get_bits(6)];
                   channel2_scalefactor2 = channel2_scalefactor3 =
                                                         scalefactors[stream.get_bits(6)];
               break;
             }
             prepare_sample_reading(header, channel2_allocation, 1,
                                   channel2_factor, channel2_codelength, channel2_c,
                                   channel2_d);
         }
        }

        /**
         *
         */
        public boolean read_sampledata (Bitstream stream)
        {
          boolean returnvalue = super.read_sampledata(stream);
        
          if (channel2_allocation != 0)
             if (groupingtable[1] != null)
             {
                  int samplecode = stream.get_bits(channel2_codelength[0]);
                  // create requantized samples:
                  samplecode += samplecode << 1;
            /*
                  float[] target = channel2_samples;
                  float[] source = channel2_groupingtable[0];
                  int tmp = 0;
                  int temp = 0;
                  target[tmp++] = source[samplecode + temp];
                  temp++;
                  target[tmp++] = source[samplecode + temp];
                  temp++;
                  target[tmp] = source[samplecode + temp];
                  // memcpy (channel2_samples, channel2_groupingtable + samplecode, 3 * sizeof (real));
            */
            float[] target = channel2_samples;
          float[] source = groupingtable[1];
                  int tmp = 0;
                  int temp = samplecode;
            target[tmp] = source[temp];
                  temp++;tmp++;
            target[tmp] = source[temp];
                  temp++;tmp++;
            target[tmp] = source[temp];
            
            } 
              else 
              {
                  channel2_samples[0] = (float) ((stream.get_bits(channel2_codelength[0])) *
                                                       channel2_factor[0] - 1.0);
                  channel2_samples[1] = (float) ((stream.get_bits(channel2_codelength[0])) *
                                                       channel2_factor[0] - 1.0);
                  channel2_samples[2] = (float) ((stream.get_bits(channel2_codelength[0])) *
                                    channel2_factor[0] - 1.0);
             }
           return returnvalue;
        }

        /**
         *
         */
        public boolean put_next_sample(int channels, SynthesisFilter filter1, SynthesisFilter filter2)
        {
          boolean returnvalue = super.put_next_sample(channels, filter1, filter2);
          if ((channel2_allocation != 0) && (channels != OutputChannels.LEFT_CHANNEL))
          {
             float sample = channel2_samples[samplenumber - 1];
        
             if (groupingtable[1] == null)
                  sample = (sample + channel2_d[0]) * channel2_c[0];
        
             if (groupnumber <= 4)
                  sample *= channel2_scalefactor1;
             else if (groupnumber <= 8)
                  sample *= channel2_scalefactor2;
             else
                  sample *= channel2_scalefactor3;
             if (channels == OutputChannels.BOTH_CHANNELS)
                  filter2.input_sample(sample, subbandnumber);
             else
                  filter1.input_sample(sample, subbandnumber);
          }
            return returnvalue;
        }
      }
}

Generated by  Doxygen 1.6.0   Back to index